University of Wollongong
Browse

Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults

Download (734.55 kB)
journal contribution
posted on 2024-11-15, 04:09 authored by Lasantha Meegahapola, Damian Flynn, Tim Littler
This paper proposes a decoupled fault ride-through strategy for a doubly fed induction generator (DFIG) to enhance network stability during grid disturbances. The decoupled operation proposes that a DFIG operates as an induction generator (IG) with the converter unit acting as a reactive power source during a fault condition. The transition power characteristics of the DFIG have been analyzed to derive the capability of the proposed strategy under various system conditions. The optimal crowbar resistance is obtained to exploit the maximum power capability from the DFIG during decoupled operation. The methods have been established to ensure proper coordination between the IG mode and reactive power compensation from the grid-side converter during decoupled operation. The viability and benefits of the proposed strategy are demonstrated using different testnetwork structures and different wind penetration levels. Control performance has been benchmarked against existing grid code standards and commercial wind generator systems, based on the optimal network support required (i.e., voltage or frequency) by the system operator from a wind farm installed at a particular location.

History

Citation

L. G. Meegahapola, D. Flynn & T. Littler, "Decoupled-DFIG fault ride-through strategy for enhanced stability performance during grid faults," IEEE Transactions of Sustainable Energy, vol. 1, (3) pp. 152-162, 2010.

Journal title

IEEE Transactions on Sustainable Energy

Volume

1

Issue

3

Pagination

152-162

Language

English

RIS ID

37968

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC