University of Wollongong
Browse

Cosmogenic 21Ne analysis of individual detrital grains: opportunities and limitations

Download (2.17 MB)
journal contribution
posted on 2024-11-14, 23:03 authored by Alexandru CodileanAlexandru Codilean, Paul Bishop, Trevor B Hoey, Finlay M Stuart, Derek Fabel
We use a numerical model describing cosmogenic nuclide acquisition in sediment moving through the upper Gaub River catchment to evaluate the extent to which aspects of source area geomorphology and geomorphological processes can be inferred from frequency distributions of cosmogenic 21Ne (21Nec) concentrations in individual detrital grains. The numerical model predicts the pathways of sediment grains from their source to the outlet of the catchment and calculates the total 21Nec concentration that each grain acquires along its pathway. The model fully accounts for variations in nuclide production due to changes in latitude, altitude and topographic shielding and allows for spatially variable erosion and sediment transport rates. Model results show that the form of the frequency distribution of 21Nec concentrations in exported sediment is sensitive to the range and spatial distribution of processes operating in the sediment's source areas and that this distribution can be used to infer the range and spatial distribution of erosion rates that characterise the catchment. The results also show that lithology can affect the form of the 21Nec concentration distribution indirectly by exerting control on the spatial pattern of denudation in a catchment. Model results further indicate that the form of the distribution of 21Nec concentrations in the exported sediment can also be affected by the acquisition of 21Nec after detachment from bedrock, in the diffusive (hillslope) and/or advective (fluvial) domains. However, for such post-detachment nuclide acquisition to be important, this effect needs to at least equal the nuclide acquisition prior to detachment from bedrock.

History

Citation

Codilean, A. T., Bishop, P., Hoey, T. B., Stuart, F. M. & Fabel, D. (2010). Cosmogenic 21Ne analysis of individual detrital grains: opportunities and limitations. Earth Surface Processes and Landforms, 35 (1), 16-27.

Journal title

Earth Surface Processes and Landforms

Volume

35

Issue

1

Pagination

16-27

Language

English

RIS ID

88524

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC