University of Wollongong
Browse

Convolutional Deep Neural Network and Full Connectivity for Speech Enhancement

journal contribution
posted on 2024-11-17, 12:51 authored by Ban M Alameri, Inas Jawad Kadhim, Suha Qasim Hadi, Ali F Hassoon, Mustafa M Abd, Prashan Premaratne
The speech signal that is received in real-time has background noise and reverberations, which have an impact on the quality of speech. Therefore, it is crucial to reduce or eliminate the noise and increase the intel-ligibility and quality of speech signals. In this study, a proposed method that is the most effective and challenging in a low SNR environment for three types of noise are removed, including washing machine, traffic noise, and electric fan noise, and clean speech is recovered. with three samples of noise which are mixed and added to the clean speech signal with a lower level of SNR value fixed at (-5, 0, 5) dBs, that noise source takes equal weights. The enhancement of the corrupted speech signal is done by applying a fully connected and convo-lutional neural network-based denoising algorithm and comparing their perfor-mance. The proposed network shows that a fully connected network (FCN) has less elapsed time than a convolutional network (CNN) while still achieving better performance, demonstrating its applicability for an embedded system. Also, the results obtained show that, overall, the CNN is better than the FCN regarding maximum coloration, PSNR, MES, and STOI.

History

Journal title

International journal of online and biomedical engineering

Volume

19

Issue

4

Pagination

140-154

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC