University of Wollongong
Browse

Content based image retrieval using unclean positive examples

Download (255.69 kB)
journal contribution
posted on 2024-11-15, 10:22 authored by Jun Zhang, Lei Ye
Conventional content-based image retrieval (CBIR) schemes employing relevance feedback may suffer from some problems in the practical applications. First, most ordinary users would like to complete their search in a single interaction especially on the Web. Second, it is time consuming and difficult to label a lot of negative examples with sufficient variety. Third, ordinary users may introduce some noisy examples into the query. This correspondence explores solutions to a new issue that image retrieval using unclean positive examples. In the proposed scheme, multiple feature distances are combined to obtain image similarity using classification technology. To handle the noisy positive examples, a new two-step strategy is proposed by incorporating the methods of data cleaning and noise tolerant classifier. The extensive experiments carried out on two different real image collections validate the effectiveness of the proposed scheme.

History

Citation

Zhang, J. & Ye, L. (2009). Content based image retrieval using unclean positive examples. IEEE Transactions on Image Processing, 18 (10), 2370-2375.

Journal title

IEEE Transactions on Image Processing

Volume

18

Issue

10

Pagination

2370-2375

Language

English

RIS ID

32336

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC