University of Wollongong
Browse

Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles

journal contribution
posted on 2024-11-15, 02:30 authored by Katharina Schirmer, Dorna Esrafilzadeh, Brianna Thompson, Anita Quigley, Robert Kapsa, Gordon WallaceGordon Wallace
Continuous composite fibres composed of polypyrrole (PPy) nanoparticles and reduced graphene oxide (rGO) at different mass ratios were fabricated using a single step wet-spinning approach. The electrical conductivity of the composite fibres increased significantly with the addition of rGO. The mechanical properties of the composite fibres also improved by the addition of rGO sheets compared to fibres containing only PPy. The ultimate tensile strength of the fibres increased with the proportion of rGO mass present. The elongation at break was greatest for the composite fibre containing equal mass ratios of PPy nanoparticles and rGO sheets. L929 fibroblasts seeded onto fibres showed no reduction in cell viability. To further assess toxicity, cells were exposed to media that had been used to extract any aqueous-soluble leachates from developed fibre. Overall, these composite fibres show promising mechanical and electrical properties while not significantly impeding cell growth, opening up a wide range of potential applications including nerve and muscle regeneration studies.

History

Citation

Schirmer, K. S. U., Esrafilzadeh, D., Thompson, B. C., Quigley, A. F., Kapsa, R. M. I. & Wallace, G. G. (2016). Conductive composite fibres from reduced graphene oxide and polypyrrole nanoparticles. Journal of Materials Chemistry B, 4 (6), 1142-1149.

Journal title

Journal of Materials Chemistry B

Volume

4

Issue

6

Pagination

1142-1149

Language

English

RIS ID

105438

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC