University of Wollongong
Browse

Computational capabilities of graph neural networks

Download (1.32 MB)
journal contribution
posted on 2024-11-15, 03:50 authored by Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus HagenbuchnerMarkus Hagenbuchner, Gabriele Monfardini
In this paper, we will consider the approximation properties of a recently introduced neural network model called graph neural network (GNN), which can be used to process-structured data inputs, e.g., acyclic graphs, cyclic graphs, and directed or undirected graphs. This class of neural networks implements a function tau(G, n) isin R m that maps a graph G and one of its nodes n onto an m-dimensional Euclidean space. We characterize the functions that can be approximated by GNNs, in probability, up to any prescribed degree of precision. This set contains the maps that satisfy a property called preservation of the unfolding equivalence, and includes most of the practically useful functions on graphs; the only known exception is when the input graph contains particular patterns of symmetries when unfolding equivalence may not be preserved. The result can be considered an extension of the universal approximation property established for the classic feedforward neural networks (FNNs). Some experimental examples are used to show the computational capabilities of the proposed model.

History

Citation

Scarselli, F., Gori, M., Tsoi, A., Hagenbuchner, M. & Monfardini, G. 2009, 'Computational capabilities of graph neural networks', IEEE Transactions on Neural Networks, vol. 20, no. 1, pp. 81-102.

Journal title

IEEE Transactions on Neural Networks

Volume

20

Issue

1

Pagination

81-102

Language

English

RIS ID

25602

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC