University of Wollongong
Browse

Comparative genomic analysis of ESBL-selected and non-selected Escherichia coli in Australian wastewater: Elucidating differences in diversity, antimicrobial resistance, and virulence profiles

journal contribution
posted on 2024-11-17, 14:45 authored by Veronica M Jarocki, Dmitriy Li, Daniel R Bogema, Jerald Yam, Cheryl Jenkins, Faisal I Hai, Steven P Djordjevic
Extended-spectrum β-lactamases (ESBLs)-producing E. coli have been proposed as an indicator bacterium for antimicrobial resistance (AMR) surveillance within a OneHealth framework. However, it is important to understand the effects and potential biases ESBL-selection has on E. coli populations. Utilising whole genome sequencing, this study compared 80 ESBL-selected E. coli isolates with 201 non-selected isolates from Australian wastewater. The findings revealed significant variations between these cohorts in genetic diversity, AMR profiles, and carriage of virulence-associated genes (VAGs), plasmids, and the transmissible Locus of Stress Tolerance (tLST), a genomic island that imparts resistance to extreme heat and chlorination. The study highlights the predominance of certain sequence types (STs), particularly ST131 (75 % clade A), in ESBL-selected isolates (40 % vs 2 %) and overall the ESBL-selected isolates were largely multidrug-resistant (MDR), predominantly carrying genes for resistance to aminoglycosides, extended-spectrum β-lactams, fluoroquinolone, macrolides, sulphonamides/trimethoprim, and tetracyclines. The ESBLs identified were almost exclusively blaCTX-M genes, most commonly blaCTX-M-15 > blaCTX-M-27 > blaCTX-M-14. These were predominately carried on IncF plasmids or chromosomally (always ISEcp1 associated), in equal numbers. In contrast, 80 % of non-selected isolates carried no acquired ARGs, and none carried blaCTX-M genes. In both cohorts, extraintestinal pathogenic E. coli (ExPEC) was the dominate pathotype (35 % total) with few (4 % total) intestinal pathogenic E. coli pathotypes identified (aEPEC > ETEC > EAEC). Nevertheless, some clinically important genes were only identified in the non-selected group, namely tigecycline-resistance gene tet(X4) and AmpC ESBL blaCMY-2. Additionally, the presence of tLST, associated with higher metal resistance gene carriage (Ag, As, Cu, Hg, Ni), in a substantial portion of non-selected isolates (20 % vs 0 %), underscores environmental pressures shaping bacterial populations in wastewater ecosystems. These insights are important for developing comprehensive, less biased genomic surveillance strategies to understand and manage public health threats posed by pathogenic E. coli and AMR.

Funding

University of Technology Sydney (MRFF75873)

History

Journal title

Science of the Total Environment

Volume

949

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC