Background: Stationary subjects who perceive visually induced illusions of self-motion, or vection, in virtual reality (VR) often experience cybersickness, the symptoms of which are similar to those experienced during motion sickness. An experiment was conducted to test the effects of single and dual-axis rotation of a virtual environment on cybersickness. It was predicted that VR displays which induced illusory dual-axis (as opposed to single-axis) self-rotations in stationary subjects would generate more sensory conflict and subsequently more cybersickness. Methods: There were 19 individuals (5 men, 14 women, mean age = 19.8 yr) who viewed the interior of a virtual cube that steadily rotated (at 60ÃÂÃÂÃÂð ÃÂÃÂÃÂ÷ sÃÂâÃÂÃÂÃÂÃÂ1) about either the pitch axis or both the pitch and roll axes simultaneously. Subjects completed the Simulator Sickness Questionnaire (SSQ) before a trial and after 5 min of stimulus viewing. Results: Post-treatment total SSQ scores and subscores for nausea, oculomotor, and disorientation were significantly higher in the dual-axis condition. Conclusions: These results support the hypothesis that a vection-inducing VR stimulus that rotates about two axes generates more cybersickness compared to a VR stimulus that rotates about only one. In the single-axis condition, sensory conflict and pseudo-Coriolis effects may have led to symptoms. However, in the dual-axis condition, not only was perceived self-motion more complex (two axes compared to one), the inducing stimulus was consistent with twice as much self-motion. Hence, the increased likelihood/magnitude of sensory conflict and pseudo-Coriolis effects may have subsequently resulted in a higher degree of cybersickness in the dual-axis condition.
History
Citation
Bonato, F., Bubka, A. & Palmisano, S. A. (2009). Combined Pitch and Roll and Cybersickness in a Virtual Environment. Aviation, Space and Environmental Medicine, 80 (11), 941-945.