University of Wollongong
Browse

Coexistence of giant positive and large negative electrocaloric effects in lead-free ferroelectric thin film for continuous solid-state refrigeration

journal contribution
posted on 2024-11-17, 16:23 authored by Changhong Yang, Chao Feng, Panpan Lv, Jin Qian, Yajie Han, Xiujuan Lin, Shifeng Huang, Xin Cheng, Zhenxiang Cheng
The solid-state cooling technique utilizing electrocaloric (EC) materials is an alternative approach to tackle the greenhouse effect caused by traditional vapor-compression refrigeration. However, such a promising technique is severely hampered by the lack of proper materials considering that most existing EC materials with a single positive/negative EC effect exhibit a limited cooling effect. Here, the coexistence of a positive and negative EC effects has been achieved in a lead-free Na0.5Bi0.5(Ti0.97W0.01Fe0.02)O3 ferroelectric film. A state-of-the-art positive adiabatic temperature change (ΔT) of ~56 K accompanied by an isothermal entropy change (ΔS) of ~64 J K−1 kg−1 at 143 °C and a large negative ΔT of ~ − 17 K with a ΔS of ~ − 24 J K−1 kg−1 at 55 °C are obtained under a strong electric field strength of 2692 kV cm−1. Oxygen vacancy-related defect dipoles play a critical role in the negative EC effect at lower temperatures, while the phase transition is responsible for the positive EC effect at higher temperatures. Meanwhile, the film exhibits a high EC strength with a maximum ΔT/ΔE of 0.021 K cm kV−1, together with a ΔS/ΔE of 0.024 J cm K−1 kg−1 kV−1. This work ensures a giant total temperature change by utilizing and combining both the negative and positive EC effects in a dual cooling process.

Funding

Australian Research Council (2019GXRC017)

History

Journal title

Nano Energy

Volume

88

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC