University of Wollongong
Browse

Chronic antipsychotic treatment differentially modulates protein kinase A- and glycogen synthase kinase 3 beta-dependent signaling pathways, N-methyl-D-aspartate receptor and γ-aminobutyric acid A receptors in nucleus accumbens of juvenile rats

Download (2.48 MB)
journal contribution
posted on 2024-11-16, 03:47 authored by Bo Pan, Jiamei LianJiamei Lian, Chao DengChao Deng
Background: Antipsychotics are developed to treat mental disorders in adults; however, the prescription (mostly "off-label") of antipsychotics for children/adolescents has been constantly increasing over years. The influences of antipsychotics on juveniles requires investigation to validate their clinic use. Antipsychotics mainly exert their effects via several receptors and signaling pathways. Aims: This study examined the effects of aripiprazole, olanzapine, and risperidone on selected signaling pathways, N-methyl-D-aspartate, and γ-aminobutyric acid A receptors in juveniles. Methods: Rats were orally administered aripiprazole (1 mg/kg), olanzapine (1 mg/kg), risperidone (0.3 mg/kg), or vehicle three times/day from postnatal day 23 (±1 day) for three weeks. The effects of antipsychotics in the nucleus accumbens and caudate putamen were measured by Western blots. Results: In the nucleus accumbens, all three drugs differentially increased N-methyl-D-aspartate and γ-aminobutyric acid A receptor expression. Additionally, all three antipsychotics differentially elevated the phosphorylation of glycogen synthase kinase 3 beta, β-catenin, and cAMP-responsive element-binding protein 1. In the caudate putamen, olanzapine increased β-catenin phosphorylation; and aripiprazole and olanzapine elevated γ-aminobutyric acid A receptor levels. Correlation analysis indicated that antipsychotics might modulate N-methyl-D-aspartate receptors via glycogen synthase kinase 3 beta-β-catenin signaling and/or cAMP-responsive element-binding protein 1 activation. Conclusions: These findings suggest that antipsychotics can affect protein kinase A- and glycogen synthase kinase 3 beta-dependent signaling pathways in juveniles; and their modulation on N-methyl-D-aspartate and γ-aminobutyric acid A receptors is probably through glycogen synthase kinase 3 beta-β-catenin signaling and/or cAMP-responsive element-binding protein 1 activation.

Funding

Understanding the mechanisms for ameliorating/preventing antipsychotic-induced obesity in early life

National Health and Medical Research Council

Find out more...

Early antipsychotic exposure during childhood and adolescence: Does it lead to long term brain and behaviour changes in adulthood?

National Health and Medical Research Council

Find out more...

History

Citation

Pan, B., Lian, J. & Deng, C. (2018). Chronic antipsychotic treatment differentially modulates protein kinase A- and glycogen synthase kinase 3 beta-dependent signaling pathways, N-methyl-D-aspartate receptor and γ-aminobutyric acid A receptors in nucleus accumbens of juvenile rats. Journal of Psychopharmacology, 32 (11), 1252-1263.

Journal title

Journal of Psychopharmacology

Volume

32

Issue

11

Pagination

1252-1263

Language

English

RIS ID

130325

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC