University of Wollongong
Browse

File(s) not publicly available

Charge collection in n-SOI planar microdosimeters

journal contribution
posted on 2024-11-16, 08:41 authored by Jayde Livingstone, Dale ProkopovichDale Prokopovich, Linh T Tran, Susanna GuatelliSusanna Guatelli, Marco PetaseccaMarco Petasecca, Michael LerchMichael Lerch, Mark Reinhard, V L Perevertaylo, James F Ziegler, Marco Zaider, Anatoly RozenfeldAnatoly Rozenfeld
An n-SOI microdosimeter which has been proposed as a device for predicting the occurrence of single event effects in semiconductor electronics in the high-energy, mixed heavy ion space radiation environment has been investigated to better understand the charge collection geometry and charge collection mechanisms. Ion beam induced charge collection studies using 20 MeV C ions, 5.5 MeV He ions, and 2 MeV H ions were carried out, and the effects of different bias conditions, angles of ion incidence, and coincidence analysis were observed to understand the sensitive volume geometry. The energy response of the n-SOI microdosimeter has been observed to exhibit an over-response of 56%, 113%, and 23% for the above ions compared to expected energy depositions calculated using SRIM 2008. No relationship between particle LET AU: Please provide spelling for "LET" and the enhance energy response was apparent. A comparison of experimentally measured and simulated spectra suggest a cylindrical charge collection geometry despite the physical rectangular parallelepiped geometry of the p-i-n diode. This was supported by observing the response of the microdosimeter to ions at oblique ion incidence. A simplified model of diffusion charge collection found that diffusion charge collection contributes to the low-energy tail observed in experimental spectra, but does not account for the observed enhanced energy response. This supports the current theory that the enhanced energy response is a result of a displacement current produced when charge carriers in the substrate induce charge in the SOI layer due to the parasitic capacitance of the buried SiO insulating layer.

Funding

Development of innovative radiation detectors and computational techniques for improving quality of life

Australian Research Council

Find out more...

History

Citation

Livingstone, J., Prokopovich, D. A., Tran, L. T., Guatelli, S., Petasecca, M., Lerch, M. LF., Reinhard, M. I., Perevertaylo, V. L., Ziegler, J. F., Zaider, M. & Rozenfeld, A. (2013). Charge collection in n-SOI planar microdosimeters. IEEE Transactions on Nuclear Science, 60 (6), 4289-4296.

Journal title

IEEE Transactions on Nuclear Science

Volume

60

Issue

6

Pagination

4289-4296

Language

English

RIS ID

84773

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC