University of Wollongong
Browse

Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems

Download (973.29 kB)
journal contribution
posted on 2024-11-15, 08:35 authored by Haoshan Ren, Zhenjun MaZhenjun Ma, Stefan Gschwander
Desiccant solutions play an essential role in desiccant cooling systems to absorb moisture from the process air. This paper presents the characterisation of a new working solution for liquid desiccant cooling systems. The new working solution was prepared through dispersion of micro-encapsulated phase change materials (MPCMs) into lithium chloride (LiCl) desiccant solutions to ensure that the dehumidification process was achieved under a low temperature condition and to improve thermal capacity and moisture removal efficiency of the mixture. The properties of the new solution, including density, enthalpy-temperature relationship, particle size distribution, thermal conductivity, and vapour pressure were characterised through either experimental tests or theoretical analysis. It was shown that the density and thermal conductivity of the new working solution slightly decreased with the increase of the mass fraction of the MPCMs in the mixture. The thermal capacity of the new working solution substantially increased in the melting temperature range of the MPCMs used. The vapour pressure of the new working solution decreased due to the existence of the MPCM particles. It is expected that the dehumidification efficiency of adiabatic dehumidifiers can be potentially improved when using this new working solution due to the decreased vapour pressure and increased thermal capacity of the phase change enhanced desiccant solution.

History

Citation

Ren, H., Ma, Z. & Gschwander, S. (2019). Characterisation and evaluation of a new phase change enhanced working solution for liquid desiccant cooling systems. Applied Thermal Engineering, 150 1197-1205.

Journal title

Applied Thermal Engineering

Volume

150

Pagination

1197-1205

Language

English

RIS ID

133054

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC