Carboxylated Poly (p-Phenylene Terephthalamide) Reinforced Polyetherimide for High-Temperature Dielectric Energy Storage
journal contribution
posted on 2024-11-17, 14:13authored byJingjing Yan, Huan Wang, Junyang Zeng, Xin Zhang, Ce Wen Nan, Shujun Zhang
Dielectric energy storage polymers play a vital role in advanced electronics and electrical systems, due to their high breakdown strength, excellent reliability, and easy fabrication. However, the low dielectric constant and poor thermal resistance of dielectric polymers limit their energy storage density and working temperatures, making them less versatile for broader applications. In this work, a novel carboxylated poly (p-phenylene terephthalamide) (c-PPTA) is synthesized and employed to simultaneously enhance the dielectric constant and thermal resistance of polyetherimide (PEI), leading to a discharged energy density of 6.4 J cm−3 at 150 °C. The introduction of c-PPTA molecules effectively reduces the Π-Π stacking effect and increases the average chain spacing between polymer molecules, which is conducive to improving the dielectric constant. Additionally, c-PPTA molecules with stronger positive charges and high dipole moments can capture electrons, resulting in reduced conduction loss and enhanced breakdown strength at high temperatures. The coiled capacitor fabricated with the PEI/c-PPTA film exhibits superior capacitance performances and higher working temperatures compared to commercial metalized PP capacitors, demonstrating great potential for dielectric polymers in high-temperature electronic and electrical energy storage systems.
Funding
National Natural Science Foundation of China (51788104)