Brachyview: proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy
journal contribution
posted on 2024-11-16, 08:35 authored by Marco PetaseccaMarco Petasecca, K J Loo, Mitra Safavi-Naeini, Z Han, Peter MetcalfePeter Metcalfe, S Meikle, S Pospisil, J Jakubek, Joseph Bucci, Marco Zaider, Michael LerchMichael Lerch, Yujin QiYujin Qi, Anatoly RozenfeldAnatoly RozenfeldPurpose: The conformity of the achieved dose distribution to the treatment plan strongly correlates with the accuracy of seed implantation in a prostate brachytherapy treatment procedure. Incorrect seed placement leads to both short and long term complications, including urethral and rectal toxicity. The authors present BrachyView, a novel concept of a fast intraoperative treatment planning system, to provide real-time seed placement information based on in-body gamma camera data. BrachyView combines the high spatial resolution of a pixellated silicon detector (Medipix2) with the volumetric information acquired by a transrectal ultrasound (TRUS). The two systems will be embedded in the same probe so as to provide anatomically correct seed positions for intraoperative planning and postimplant dosimetry. Dosimetric calculations are based on the TG-43 method using the real position of the seeds. The purpose of this paper is to demonstrate the feasibility of BrachyView using the Medipix2 pixel detector and a pinhole collimator to reconstruct the real-time 3D position of low dose-rate brachytherapy seeds in a phantom. Methods: BrachyView incorporates three Medipix2 detectors coupled to a multipinhole collimator. Three-dimensionally triangulated seed positions from multiple planar images are used to determine the seed placement in a PMMA prostate phantom in real time. MATLAB codes were used to test the reconstruction method and to optimize the device geometry. Results: The results presented in this paper show a 3D position reconstruction accuracy of the seed in the range of 0.5-3 mm for a 10-60 mm seed-to-detector distance interval (Z direction), respectively. The BrachyView system also demonstrates a spatial resolution of 0.25 mm in the XY plane for sources at 10 mm distance from Medipix2 detector plane, comparable to the theoretical value calculated for an equivalent gamma camera arrangement. The authors successfully demonstrated the capability of BrachyView for real-time imaging (using a 3 s data acquisition time) of different brachytherapy seed configurations (with an activity of 0.05 U) throughout a 60 × 60 × 60 mm3 Perspex prostate phantom. Conclusions: The newly developed miniature gamma camera component of BrachyView, with its high spatial resolution and real time capability, allows accurate 3D localization of seeds in a prostate phantom. Combination of the gamma camera with TRUS in a single probe will complete the BrachyView system. © 2013 American Association of Physicists in Medicine.
Funding
TEMPERATURE STUDY OF CUTTING TOOLS IN CONVENTIONAL CUTTING SPEED RANGE AND IN HIGH-SPEED MACHINING CONDITIONS.
Coordenação de Aperfeicoamento de Pessoal de Nível Superior
Find out more...History
Citation
Petasecca, M., Loo, K. J., Safavi-Naeini, M., Han, Z., Metcalfe, P. E., Meikle, S., Pospisil, S., Jakubek, J., Bucci, J., Zaider, M., Lerch, M. L. F., Qi, Y. & Rosenfeld, A. B. (2013). BrachyView: Proof-of-principle of a novel in-body gamma camera for low dose-rate prostate brachytherapy. Medical Physics, 40 (4), 041709-1-041709-9.Journal title
Medical PhysicsVolume
40Issue
4Publisher website/DOI
Language
EnglishRIS ID
77740Usage metrics
Categories
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC