University of Wollongong
Browse

Automated authorship attribution using advanced signal classification techniques

Download (321.28 kB)
journal contribution
posted on 2024-11-15, 17:08 authored by Maryam Ebrahimpour, Talis J Putnins, Matthew Berryman, Andrew Allison, Brian W-H Ng, Derek Abbott
In this paper, we develop two automated authorship attribution schemes, one based on Multiple Discriminant Analysis (MDA) and the other based on a Support Vector Machine (SVM). The classification features we exploit are based on word frequencies in the text. We adopt an approach of preprocessing each text by stripping it of all characters except a-z and space. This is in order to increase the portability of the software to different types of texts. We test the methodology on a corpus of undisputed English texts, and use leave-one-out cross validation to demonstrate classification accuracies in excess of 90%. We further test our methods on the Federalist Papers, which have a partly disputed authorship and a fair degree of scholarly consensus. And finally, we apply our methodology to the question of the authorship of the Letter to the Hebrews by comparing it against a number of original Greek texts of known authorship. These tests identify where some of the limitations lie, motivating a number of open questions for future work. An open source implementation of our methodology is freely available for use at https://github.com/matthewberryman/author-detection.

History

Citation

Ebrahimpour, M., Putnins, T. J., Berryman, M. J., Allison, A., Ng, B. W-H. & Abbott, D. (2013). Automated authorship attribution using advanced signal classification techniques. PLoS One, 8 (2), 1-12.

Journal title

PLoS ONE

Volume

8

Issue

2

Language

English

RIS ID

75470

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC