University of Wollongong
Browse

Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery

Download (241.76 kB)
journal contribution
posted on 2024-11-15, 08:18 authored by Ashley Ansari, Faisal HaiFaisal Hai, William PriceWilliam Price, Hao H Ngo, Wenshan Guo, Long Nghiem
This study assessed the performance and key challenges associated with the integration of forward osmosis (FO) and anaerobic digestion for wastewater treatment and resource recovery. Using a thin film composite polyamide FO membrane, maximising the pre-concentration factor (i.e. system water recovery) resulted in the enrichment of organics and salinity in wastewater. Biomethane potential evaluation indicated that methane production increased correspondingly with the FO pre-concentration factor due to the organic retention in the feed solution. At 90% water recovery, about 10% more methane was produced when using NaOAc compared with NaCl because of the contribution of biodegradable reverse NaOAc flux. No negative impact on anaerobic digestion was observed when wastewater was pre-concentrated ten-fold (90% water recovery) for both draw solutes. Interestingly, the unit cost of methane production using NaOAc was slightly lower than NaCl due to the lower reverse solute flux of NaOAc, although NaCl is a much cheaper chemical.

History

Citation

Ansari, A. J., Hai, F. I., Price, W. E., Ngo, H. H., Guo, W. & Nghiem, L. D. (2018). Assessing the integration of forward osmosis and anaerobic digestion for simultaneous wastewater treatment and resource recovery. Bioresource Technology, 260 221-226.

Journal title

Bioresource Technology

Volume

260

Pagination

221-226

Language

English

RIS ID

127347

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC