University of Wollongong
Browse

Artificial intelligence-enabled ECG algorithm based on improved residual network for wearable ECG

journal contribution
posted on 2024-11-17, 15:47 authored by Hongqiang Li, Zhixuan An, Shasha Zuo, Wei Zhu, Zhen Zhang, Shanshan Zhang, Cheng Zhang, Wenchao Song, Quanhua Mao, Yuxin Mu, Enbang Li, Juan Daniel Prades García
Heart disease is the leading cause of death for men and women globally. The residual network (ResNet) evolution of electrocardiogram (ECG) technology has contributed to our under-standing of cardiac physiology. We propose an artificial intelligence-enabled ECG algorithm based on an improved ResNet for a wearable ECG. The system hardware consists of a wearable ECG with conductive fabric electrodes, a wireless ECG acquisition module, a mobile terminal App, and a cloud diagnostic platform. The algorithm adopted in this study is based on an improved ResNet for the rapid classification of different types of arrhythmia. First, we visualize ECG data and convert one-dimensional ECG signals into two-dimensional images using Gramian angular fields. Then, we improve the ResNet-50 network model, add multistage shortcut branches to the network, and optimize the residual block. The ReLu activation function is replaced by a scaled exponential linear units (SELUs) activation function to improve the expression ability of the model. Finally, the images are input into the improved ResNet network for classification. The average recognition rate of this classification algorithm against seven types of arrhythmia signals (atrial fibrillation, atrial premature beat, ventricular premature beat, normal beat, ventricular tachycardia, atrial tachycardia, and sinus bradycardia) is 98.3%.

Funding

National Natural Science Foundation of China (18ZXJMTG00260)

History

Journal title

Sensors

Volume

21

Issue

18

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC