Applying generative AI with retrieval augmented generation to summarize and extract key clinical information from electronic health records
journal contribution
posted on 2024-11-17, 14:46authored byMohammad Alkhalaf, Ping Yu, Mengyang Yin, Chao Deng
Background: Malnutrition is a prevalent issue in aged care facilities (RACFs), leading to adverse health outcomes. The ability to efficiently extract key clinical information from a large volume of data in electronic health records (EHR) can improve understanding about the extent of the problem and developing effective interventions. This research aimed to test the efficacy of zero-shot prompt engineering applied to generative artificial intelligence (AI) models on their own and in combination with retrieval augmented generation (RAG), for the automating tasks of summarizing both structured and unstructured data in EHR and extracting important malnutrition information. Methodology: We utilized Llama 2 13B model with zero-shot prompting. The dataset comprises unstructured and structured EHRs related to malnutrition management in 40 Australian RACFs. We employed zero-shot learning to the model alone first, then combined it with RAG to accomplish two tasks: generate structured summaries about the nutritional status of a client and extract key information about malnutrition risk factors. We utilized 25 notes in the first task and 1,399 in the second task. We evaluated the model's output of each task manually against a gold standard dataset. Result: The evaluation outcomes indicated that zero-shot learning applied to generative AI model is highly effective in summarizing and extracting information about nutritional status of RACFs’ clients. The generated summaries provided concise and accurate representation of the original data with an overall accuracy of 93.25%. The addition of RAG improved the summarization process, leading to a 6% increase and achieving an accuracy of 99.25%. The model also proved its capability in extracting risk factors with an accuracy of 90%. However, adding RAG did not further improve accuracy in this task. Overall, the model has shown a robust performance when information was explicitly stated in the notes; however, it could encounter hallucination limitations, particularly when details were not explicitly provided. Conclusion: This study demonstrates the high performance and limitations of applying zero-shot learning to generative AI models to automatic generation of structured summarization of EHRs data and extracting key clinical information. The inclusion of the RAG approach improved the model performance and mitigated the hallucination problem.