University of Wollongong
Browse

File(s) not publicly available

Anisotropic giant magnetoresistance and Fermi surface topology in the layered compound YbBi2

journal contribution
posted on 2024-11-17, 15:47 authored by Xiaomeng Sun, Fang Tang, Xue Shen, Wencong Sun, Weiyao Zhao, Yuyan Han, Xucai Kan, Shan Cong, Lei Zhang, Zhida Han, Bin Qian, Xuefan Jiang, Shanshan Wang, Renkui Zheng, Yong Fang
Magnetoresistance in novel materials has been attracting ever-increasing attention since its mechanism is still the subject of intense debate and the physics behind these emergent phenomena remains a wild space to be explored. Here, we grow YbBi2 single crystals and study their anisotropic giant magnetoresistance and Fermi surface topology via de Haas-van Alphen oscillation and Hall resistivity measurements, electronic band structure calculations, and so on. A detailed analysis of the angle-dependent quantum oscillations reveals the presence of nontrivial topological electronic states and several cylindrical Fermi surface sheets extended along the b axis. Hall resistivity data suggest that multiple charge carriers participate in the transport, and electron and hole densities are nearly balanced. These findings are further confirmed by theoretical calculations. After checking several possible mechanisms, the giant magnetoresistance (∼1.2×103% at 14 T and 2 K) in YbBi2 is ascribed to the carrier compensation instead of topological protection and open orbits. Additionally, we also find that Fermi surface anisotropy serves as a key element for the angular magnetoresistance in this compound. Our studies show that YbBi2 can be not only a topologically nontrivial material, but also a prototype system to check familiar magnetoresistance mechanisms.

Funding

National Natural Science Foundation of China (QMNEM1903)

History

Journal title

Physical Review B

Volume

105

Issue

19

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC