University of Wollongong
Browse

Anchoring nanoarchitectonics of 1T’-MoS2 nanoflakes on holey graphene sheets for lithium-ion batteries with outstanding high-rate performance

journal contribution
posted on 2024-11-17, 16:47 authored by Zhenjie Mi, Danmei Hu, Jingyi Lin, Hui Pan, Zhixin Chen, Yao Li, Qinglei Liu, Shenmin Zhu
Rapid charging is of high demand in lithium-ion batteries (LIBs). Molybdenum sulfide (MoS2) has attracted great interest as a potential anode for LIBs due to its high theoretical capacity. However, low electronic conductivity and severe volume change upon lithiation/delithiation hinder its applications, especially in high-rate applications. Herein, we develop a facile assembly process to fabricate a highly conductive 1T’-MoS2/rhGO composite where rhGO is referred as reduced holey graphene oxide. The abundant oxygen-containing groups on holey graphene make it possible for realizing 2D/2D assembly of 1T’-MoS2 with graphene oxide. When used in LIBs, the 1T’-MoS2/rhGO anode delivered a high specific capacity of 1084 mAh g−1 at 0.2 A g−1 and outstanding high-rate performance, 635 mAh g−1 at a large current density of 5 A g−1 for 2000 cycles with capacity retention reaching 94.5%. The excellent high-rate performance is attributed to the synergic effects of the metallic 1T'-MoS2 and the holey graphene matrix. The former increases the overall conductivity while the latter anchors 1T'-MoS2 nanoflakes tightly through chemical bonding, thus preventing volume changes during cycling. This facile approach for achieving 2D and 2D assembly paves a new way of developing high-rate performance anodes for LIBs which can better fulfill the demand for fast-charging technology.

Funding

National Natural Science Foundation of China (6141A02022264)

History

Journal title

Electrochimica Acta

Volume

403

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC