Harmonic monitoring has become an important tool for harmonic management in distribution system. A comprehensive harmonic monitoring program has been designed and implemented on a typical electrical medium-voltage distribution system in Australia. The monitoring program involved measurements of the three-phase harmonic currents and voltages from the residential, commercial, and industrial load sectors. Data over a three year period have been downloaded and available for analysis. The large amount of acquired data makes it difficult to identify operational events that significantly impact the harmonics generated on the system. More sophisticated analysis methods are required to automatically determine which part of the measurement data are of importance. Based on this information, a closer inspection of smaller data sets can then be carried out to determine the reasons for its detection. In this paper, we classify the measurement data using unsupervised learning based on clustering techniques using the minimum message length technique, which can provide the engineers with a rapid, visually oriented method of evaluating the underlying operational information contained within the clusters. Supervised learning is then used to describe the generated clusters and to predict the occurrences of unusual clusters in future measurement data.
History
Citation
Asheibi, A., Stirling, D. A. & Soetanto, D. (2009). Analyzing harmonic monitoring data using supervised and unsupervised learning. IEEE Transactions on Power Delivery, 24 (1), 293-301.