University of Wollongong
Browse

Analysis of micro flexible rolling with consideration of material heterogeneity

Download (772.44 kB)
journal contribution
posted on 2024-11-16, 08:48 authored by Feijun QuFeijun Qu, Zhengyi JiangZhengyi Jiang, Haina Lu
This paper establishes a finite element model to numerically study the springback in thickness direction during micro flexible rolling process, in which 3D Voronoi tessellation has been applied to describe grain boundary and generation process of grain in the workpiece. To reflect material heterogeneity, nine kinds of mechanical properties defined by nine types of heterogeneity coefficients are selected and assigned to Voronoi polyhedrons as per the statistical distribution of hardness of grains identified by micro hardness testing. Initial workpiece thicknesses of 100, 250 and 500 μm with reduction changing from 20% to 50% are respectively considered in the numerical simulation of micro flexible rolling process, and the effects of front and back tensions on the average springback have been discussed. With average grain sizes of 1, 10, 50, 100 and 250 μm respectively employed in the workpieces with the aforesaid initial thicknesses, the scatter of springback in thickness direction has been determined, and a model for springback has also been developed based on the simulation results.

Funding

Mechanics of innovative high precision rolling technology in micromanufacturing

Australian Research Council

Find out more...

History

Citation

Qu, F., Jiang, Z. & Lu, H. (2016). Analysis of micro flexible rolling with consideration of material heterogeneity. International Journal of Mechanical Sciences, 105 182-190.

Journal title

International Journal of Mechanical Sciences

Volume

105

Pagination

182-190

Language

English

RIS ID

104362

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC