We show that orthogonal designs of type (l,k) exist for all k = 0,1,...,2 .15-1, in order 2t .15, t ≥ 4 a positive integer. Hence there exist skew-symmetric weighing matrices W(2t .15,k) for all k = 0,1,... ,2t .15-1.
History
Citation
Seberry, J, An infinite family of skew-weighing matrices, Ars Combinatoria, 10, 1980, 323-329.