University of Wollongong
Browse

An in-depth insight of a highly reversible and dendrite-free Zn metal anode in an hybrid electrolyte

journal contribution
posted on 2024-11-17, 13:16 authored by Yuanjun Zhang, Ming Zhu, Kuan Wu, Fangfang Yu, Guanyao Wang, Gang Xu, Minghong Wu, Hua Kun Liu, Shi Xue Dou, Chao Wu
Zn metal is considered as one of the most promising anodes for aqueous high-energy batteries owing to its high theoretical capacity, low redox potential, abundant resource, and low toxicity. However, Zn metal anodes (ZMAs) still suffer from a few challenging problems such as low irreversibility and dendrite growth during plating/stripping. In this study, we identify and quantify the composition of inactive Zn responsible for capacity loss, which shows that it contains 57 mol% of unreacted Zn and 43 mol% Zn-containing byproducts. Based on this quantitative result, we developed an environmentally friendly water/glycerol hybrid electrolyte, which enable the dendrite-free plating/stripping of Zn with a high coulombic efficiency of 97.6% over 500 cycles. A symmetric Zn‖Zn cell can be repeatedly plated/stripped for more than 1500 h at 1 mA cm . Glycerol can suppress the side reactions caused by water in the hybrid electrolyte because of the strong binding interactions between glycerol and the Zn metal. The molecular-scale modeling simulations and electrochemical analysis reveal that the dense and uniform Zn electro-deposition is related to the Zn -solvation-sheath structure. The fundamental understanding of ZMAs in aqueous and hybrid electrolytes opens a viable route for the highly efficient utilization of Zn with high efficiency and safety. 0 −2 2+

Funding

Australian Research Council (DP200100365)

History

Journal title

Journal of Materials Chemistry A

Volume

9

Issue

7

Pagination

4253-4261

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC