University of Wollongong
Browse

An Examination of Indexes for Determining the Number of Clusters in Binary Data Sets

Download (328.4 kB)
journal contribution
posted on 2024-11-14, 14:06 authored by E Dimitriadou, Sara Dolnicar, A Weingessel
The problem of choosing the correct number of clusters is as old as cluster analysis itself. A number of authors have suggested various indexes to facilitate this crucial decision. One of the most extensive comparative studies of indexes was conducted by Milligan & Cooper (1985). The present piece of work pursues the same goal under different conditions. In contrast to Milligan and Cooper's work, the emphasis here is on high-dimensional empirical binary data. Binary artificial data sets are constructed to reflect features typically encountered in real-world situations in the field of marketing research. The simulation includes 162 binary data sets that are clusters by two different algorithms and lead to recommendations on the number of clusters for each index under consideration. Index results are evaluated and their performance is compared and analysed.

History

Citation

This article was originally published as: Dimitriadou, E, Dolnicar, S & Weingassel, A, An Examination of Indexes for Determining the Number of Clusters in Binary Data Sets, Psychometrika, 2002, 67(1), 137-160. The original publication is available here from Springerlink.

Journal title

Psychometrika

Volume

67

Issue

1

Pagination

137-159

Language

English

RIS ID

8171

Usage metrics

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC