University of Wollongong
Browse

Ambient aqueous growth of Cu2Te nanostructures with excellent electrocatalytic activity toward sulfide redox shuttles

Download (3.18 MB)
journal contribution
posted on 2024-11-16, 02:41 authored by Chao Han, Yang Bai, Qiao Sun, Shaohua Zhang, Zhen Li, Lianzhou Wang, Shi DouShi Dou
A new aqueous and scalable strategy to synthesize surfactant-free Cu2Te nanotubes and nanosheets at room temperature has been developed. In aqueous solution, Cu2E (E = O, S, Se) nanoparticles can be easily transformed into Cu2Te nanosheets and nanotubes via a simple anion exchange reaction under ambient conditions. The formation of Cu2Te nanosheets is ascribed to a novel exchange-peeling growth mechanism instead of simple Kirkendall effect; and the resultant nanosheets can be further rolled into nanotubes with assistance of stirring. The morphologies of Cu2Te nanosheets and nanotubes can be easily controlled by changing the synthesis parameters, such as the concentration of precursors, the size of nanoparticle precursor, and the amount of NaBH4, as well as the stirring speed. Thus-formed Cu2Te nanostructures exhibit excellent catalytic activity toward sulfide redox shuttles and are exploited as counter electrodes catalysts for quantum dot sensitized solar cells. The performance of Cu2Te nanostructures strongly depends on their morphology, and the solar cells made with counter electrodes from Cu2Te nanosheets show the maximum power conversion efficiency of 5.35%.

Funding

New generation high efficiency thermoelectric materials and modules for waste heat recovery in steelworks

Australian Research Council

Find out more...

History

Citation

Han, C., Bai, Y., Sun, Q., Zhang, S., Li, Z., Wang, L. & Dou, S. (2016). Ambient aqueous growth of Cu2Te nanostructures with excellent electrocatalytic activity toward sulfide redox shuttles. Advanced Science, 3 (5), 1500350-1-1500350-11.

Journal title

Advanced Science

Volume

3

Issue

5

Language

English

RIS ID

111225

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC