University of Wollongong
Browse

File(s) not publicly available

A strut-based process planning method for wire arc additive manufacturing of lattice structures

journal contribution
posted on 2024-11-17, 13:33 authored by Ziping Yu, Donghong Ding, Zengxi Pan, Huijun Li, Qinghua Lu, Xuewei Fang
Aluminum alloy lattice structures featuring superior energy absorption, lightweight, and high strength-weight ratio, are achievable using Additive Manufacturing (AM) technology such as selective laser sintering. However, the size of the structure is limited, and the cost is relatively high. As a free-form rapid prototyping technology, Wire Arc Additive Manufacturing (WAAM) using electric arc as an energy source has the potential to fabricate medium to large-scale lattice structures with low cost and high process efficiency. This paper presents a strut-based process planning method for the WAAM system to fabricate large-sized lattice structures (strut-based wire structures) from the input models to the final parts. The proposed method includes the strut extraction module, strut bead modelling module, sequence initialization module, and sequence optimization module. Among these modules, bead modelling provides the essential database for process control, and an innovative sequence optimization module fulfills the automated process planning requirements without collision. A user-friendly interface has been developed for non-experts to operate the process planning. Finally, two- and three-dimensional lattice structures have been fabricated automatically using CAD models as inputs. These exercises demonstrate that the proposed strut-based process planning method contributes to producing practical lattice structures and highly automated WAAM system for industrial application.

Funding

National Natural Science Foundation of China (51805085)

History

Journal title

Journal of Manufacturing Processes

Volume

65

Pagination

283-298

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC