University of Wollongong
Browse

A structural view of bacterial DNA replication

Download (1.5 MB)
journal contribution
posted on 2024-11-16, 07:27 authored by Aaron OakleyAaron Oakley
DNA replication mechanisms are conserved across all organisms. The proteins required to initiate, coordinate, and complete the replication process are best characterized in model organisms such as Escherichia coli. These include nucleotide triphosphate-driven nanomachines such as the DNA-unwinding helicase DnaB and the clamp loader complex that loads DNA-clamps onto primer-template junctions. DNA-clamps are required for the processivity of the DNA polymerase III core, a heterotrimer of α, ε, and θ, required for leading- and lagging-strand synthesis. DnaB binds the DnaG primase that synthesizes RNA primers on both strands. Representative structures are available for most classes of DNA replication proteins, although there are gaps in our understanding of their interactions and the structural transitions that occur in nanomachines such as the helicase, clamp loader, and replicase core as they function. Reviewed here is the structural biology of these bacterial DNA replication proteins and prospects for future research.

History

Citation

Oakley, A. J. (2019). A structural view of bacterial DNA replication. Protein Science, 28 (6), 990-1004.

Journal title

Protein Science

Volume

28

Issue

6

Pagination

990-1004

Language

English

RIS ID

135218

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC