University of Wollongong
Browse

A semi-active suspension using a magnetorheological damper with nonlinear negative-stiffness component

journal contribution
posted on 2024-11-17, 16:43 authored by J Yang, D Ning, S S Sun, J Zheng, H Lu, M Nakano, S Zhang, H Du, W H Li
The group of active suspensions with controllable actuating force is noted with their excellent performance in reducing vibrations, however, their demanding requirements for high power consumption and high cost as well as the highly potential instability issue have hindered their practical usage. Semi-active suspensions with controllable stiffness or damping are simple, stable and cost-efficient, but they cannot provide equivalent performance with active suspensions. By incorporating the negative stiffness mechanism into the semi-active suspension using a magnetorheological (MR) damper, this paper provides a solution to improving the vibration-reduction performance of the semi-active suspensions to the level achievable by active suspensions while avoiding the disadvantages of active control. The experimental results demonstrated that the new suspension has brought better vibration-reduction performance than the passive suspension and the conventional MR suspension, and that the vibration reduction performance is comparable with that of some of the active systems reported. Therefore, this new semi-active suspension using MR damper with negative stiffness component can be considered as a new generation of vibration control method given that it has led to a great advancement in semi-active vibration control technology.

Funding

Australian Research Council (DP150102636)

History

Journal title

Mechanical Systems and Signal Processing

Volume

147

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC