University of Wollongong
Browse

A note on orthogonal designs

Download (189.08 kB)
journal contribution
posted on 2024-11-18, 17:09 authored by J Hammer, D G Sarvate, Jennifer SeberryJennifer Seberry
We extend a method of Kharaghani and obtain some new constructions for weighing matrices and orthogonal designs. In particular we show that if there exists an OD(s1,...,sr), where w = ∑si, of order n, then there exists an OD(s1w,s2w,...,8rw) of order n(n+k) for k ≥ 0 an integer. If there is an OD(t,t,t,t) in order n, then there exists an OD(12t,12t,12t,12t) in order 12n. If there exists an OD(s,s,s,s) in order 4s and an OD(t,t,t,t) in order 4t there exists an OD(12s²t,12s²t,12s²t,12s²t) in order 48s²t and an OD(20s²t,20s²t,20s²t20s²) in order 80s²t.

History

Citation

Hammer, J, Sarvate, DG and Seberry, J, A note on orthogonal designs, Ars Combinatoria, 24, 1987, 93-100.

Language

English

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC