University of Wollongong
Browse

A new energy storage system: Rechargeable potassium-selenium battery

Download (1.7 MB)
journal contribution
posted on 2024-11-16, 04:01 authored by Yajie Liu, Zhixin Tai, Qing Zhang, Hongqiang Wang, Wei Kong PangWei Kong Pang, Hua LiuHua Liu, Konstantin KonstantinovKonstantin Konstantinov, Zaiping GuoZaiping Guo
A new reversible and high-performance potassium-selenium (K-Se) battery, using confined selenium/carbonized-polyacrylonitrile (PAN) composite (c-PAN-Se) as cathode and metallic potassium as anode, is reported in this work. The PAN-derived carbon matrix could effectively confine the small Se molecules and provide a sufficient buffer for the volume changes. The reversible formation of small-molecule trigonal Se (Se1, P3121) phase could essentially inhibit the formation of polyselenides and account for outstanding electrochemical performance. The carbonate-based electrolyte further synergistically diminishes the shuttle effect by inhibiting the formation of polyselenides in the meantime. The as-prepared K-Se battery shows a reversible capacity of 1904 mAh cm¿3after 100 cycles at 0.2 C and rate retention of 89% from 0.1 to 2 C. In addition, the charge-discharge mechanism is also investigated via the combination of in-situ and ex-situ synchrotron X-ray diffraction (XRD), and Raman spectroscopy analysis. The results reveal that the introduction of K+ions leads to the cleavage of C-Se bonds, the rearrangement of selenium atoms, and the final formation of the main product K2Se. Moreover, the reversible formation of trigonal Se (Se1, P3121) phase was detected in the reaction with K+. These findings not only can advance our understanding of this family of batteries, but also provide insight into chemically-bonded selenium composite electrodes, which could give guidance for scientific research and the optimization of Se and S electrodes for the K-S, Na-S, Li-S, Na-Se, and Li-Se batteries.

Funding

Exploration of Advanced Nanostructures for Sodium-ion Battery Application

Australian Research Council

Find out more...

High-voltage electrode materials for lithium-ion batteries

Australian Research Council

Find out more...

History

Citation

Liu, Y., Tai, Z., Zhang, Q., Wang, H., Pang, W. Kong., Liu, H. Kun., Konstantinov, K. & Guo, Z. (2017). A new energy storage system: Rechargeable potassium-selenium battery. Nano Energy, 35 36-43.

Journal title

Nano Energy

Volume

35

Pagination

36-43

Language

English

RIS ID

113146

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC