University of Wollongong
Browse

A comprehensive research on new DyCo2Mnx (x = 0.0–1.0) Laves phases

journal contribution
posted on 2024-11-17, 16:47 authored by Chun Sheng Fang, Jian Li Wang, Wayne D Hutchison, M FMd Din, W Q Wang, Q F Gu, Chinwei Wang, Shengcan Ma, Jinkui Zhao, Zhenchen Zhong, Jian Liu
DyCo2Mnx (x = 0.0, 0.2, 0.4, 0.6, and 1.0) compounds were synthesised and found to all be single-phase, isostructural to DyCo2 (MgCu2 Laves phase cubic structure (Fd-3 m) at room temperature). DyCo2Mn exhibits a huge coercivity field HC = 21,170 Oe at 5 K. The magnetic transition at Curie temperature TC, was observed as first order for DyCo2 but second order for the Mn doped compounds. Using Kouvel-Fisher plot, critical isotherm analysis and Arrott-Noaks plot techniques, a detailed critical exponents analysis was carried out on these transitions: critical exponents β ≈ 0.5, γ ≈ 1.0, and δ ≈ 3.0 were derived indicating that all the second-order transitions belong exhibit long-range magnetic interactions during the magnetic transitions. High-resolution synchrotron X-ray measurements confirm that there are crystal structure transformations sychronised with the magnetic transitions from paramagnetism to ferrimagnetism (PM-FM) at TC in the x = 0.0 and 0.2 cases with crystal structure changing from cubic (Fd-3 m) to tetragonal (I41/amd), However structures remain cubic (Fd-3 m) for x = 0.4, 0.6, and 1.0.

Funding

Australian Research Council (205200100567)

History

Journal title

Journal of Alloys and Compounds

Volume

930

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC