University of Wollongong
Browse

A battery composed of a polypyrrole cathode and a magnesium alloy anode-Toward a bioelectric battery

Download (2.26 MB)
journal contribution
posted on 2024-11-15, 02:41 authored by Yong Kong, Caiyun WangCaiyun Wang, Yang Yang, Chee Too, Gordon WallaceGordon Wallace
A bioelectric battery can be implanted into the human body and relies on oxygen in the internal body fluid to produce electrical energy. In this work, a battery that uses polypyrrole doped with a biological polyelectrolyte (dextran sulfate, an anti-coagulant) as the cathode and bioresorbable Mg alloy (AZ61) as the anode was developed. This battery exhibited a discharge capacity of 565 mA h g-1 in phosphate buffered saline (PBS, pH = 7.4), a commonly used electrolyte in biological research; offering a specific energy density of similar to 790W h kg-1. The electrochemical properties of the cathode, anode and battery itself were investigated in different aqueous electrolytes. Cyclic voltammetry, linear sweep voltammetry, AC impedance, galvanostatic charge/discharge, and field-emission scanning microscopy techniques were applied for characterization.

History

Citation

Kong, Y, Wang, C, Yang, Y, Too, CO, Wallace, GG (2012), A battery composed of a polypyrrole cathode and a magnesium alloy anode-Toward a bioelectric battery, Synthetic Metals, 162(7/8), pp. 584-589.

Journal title

Synthetic Metals

Volume

162

Issue

7/08/2024

Pagination

584-589

Language

English

RIS ID

59191

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC