University of Wollongong
Browse

A Phosphonated Poly(ethylenedioxythiophene) Derivative with Low Oxidation Potential for Energy-Efficient Bioelectronic Devices

journal contribution
posted on 2024-11-17, 14:24 authored by Jonathan Hopkins, Kristina Fidanovski, Lorenzo Travaglini, Daniel Ta, James Hook, Pawel Wagner, Klaudia Wagner, Antonio Lauto, Claudio Cazorla, David Officer, Damia Mawad
Organic electrochemical transistors (OECTs) for bioelectronic applications require the design of conjugated polymers that are stable in aqueous environments and afford high energy efficiency and good performance in OECTs. Polymers based on poly(ethylenedioxythiophene) (PEDOT) are promising in this area due to their low oxidation potential and reversible redox, but they often require cross-linking to prevent dissolution and yield OECTs operating in the less efficient depletion mode. In this work, a new conjugated polymer PEDOT-Phos is presented, which combines a conjugated poly(ethylenedioxythiophene) (PEDOT) backbone with alkyl-protected phosphonate groups. PEDOT-Phos exhibits a low oxidation onset potential (-0.157 V vs Ag/AgCl) and its nanoporous morphology affords it a high volumetric capacitance (282 ± 62 F cm-3). Without any cross-linking, additives, or post-treatment, PEDOT-Phos can be used in aqueous OECTs with efficient accumulation mode operation, long-term stability when immersed in aqueous media, low threshold voltages (-0.161 ± 0.005 V), good transconductances (9.3 ± 1.8 mS), and ON/OFF current ratios (618 ± 54) comparable to other PEDOT-based materials in OECTs. These results highlight the great promise of PEDOT-Phos as a stand-alone channel material for energy-efficient, bioelectronic devices.

Funding

Australian Research Council (DP190102560)

History

Journal title

Chemistry of Materials

Language

English

Usage metrics

    Categories

    No categories selected

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC