A spongy CoS 2 /carbon composite assembled from CoS 2 nanoparticles (∼20 nm) homogeneously anchored on a spongy carbon matrix was synthesized through a facile freeze-drying method and a hydrothermal process. As anode material for lithium/sodium ion batteries (LIBs/SIBs), this composite shows significantly enhanced lithium/sodium storage performance with the synergetic effects due to the electrical conductivity of the carbon matrix and the porous structure, which provide buffer spaces for volume expansion during charge/discharge processes and feasible transfer pathways for electrons/ions. The electrochemical results demonstrate that the spongy CoS 2 /carbon composite is an outstanding anode material for LIBs and SIBs. It delivers a high specific capacity of 610 mAh g −1 at 500 mA g −1 after 120 cycles in LIBs and 330 mAh g −1 at 500 mA g −1 after 60 cycles in SIBs, respectively. Moreover, the freeze-drying/hydrothermal process developed in this work could be useful for the construction of many other high-capacity metal sulfide composites as electrode materials for sodium ion batteries.
Funding
Multifunctional 2D materials for sustainable energy applications
Zhang, Y., Wang, N., Sun, C., Lu, Z., Xue, P., Tang, B., Bai, Z. & Dou, S. (2018). 3D spongy CoS2nanoparticles/carbon composite as high-performance anode material for lithium/sodium ion batteries. Chemical Engineering Journal, 332 370-376.