University of Wollongong
Browse

3D-Printed Wearable Electrochemical Energy Devices

journal contribution
posted on 2024-11-17, 14:21 authored by Shuai Zhang, Yuqing Liu, Junnan Hao, Gordon G Wallace, Stephen Beirne, Jun Chen
Emerging markets for wearable electronics have stimulated a rapidly growing demand for the commercialization of flexible and reliable energy storage and conversion units (including batteries, supercapacitors, and thermoelectrochemical cells). 3D printing, a rapidly growing suite of fabrication technologies, is extensively used in the above-mentioned energy-related areas owing to its relatively low cost, freedom of design, and controllable, reproducible prototyping capability. However, there remain challenges in processable ink formulation and accurate material/device design. By summarizing the recent progress in 3D-printed wearable electrochemical energy devices and discussing the current limitations and future perspectives, this article is expected to serve as a reference for the scalable fabrication of advanced energy systems via 3D printing.

Funding

Australian Research Council (CE 140100012)

History

Journal title

Advanced Functional Materials

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC