University of Wollongong
Browse

2019–20 Australian bushfires and anomalies in carbon monoxide surface and column measurements

journal contribution
posted on 2024-11-17, 15:46 authored by Shyno Susan John, Nicholas M Deutscher, Clare Paton-Walsh, Voltaire A Velazco, Nicholas B Jones, David WT Griffith
In Australia, bushfires are a natural part of the country’s landscape and essential for the regeneration of plant species; however, the 2019–20 bushfires were unprecedented in their extent and intensity. This paper is focused on the 2019–20 Australian bushfires and the resulting surface and column atmospheric carbon monoxide (CO) anomalies around Wollongong. Column CO data from the ground-based Total Carbon Column Observing Network (TCCON) and Network for the Detection of Atmospheric Composition Change (NDACC) site in Wollongong are used together with surface in situ measurements. A systematic comparison was performed between the surface in situ and column measurements of CO to better understand whether column measurements can be used as an estimate of the surface concentrations. If so, satellite column measurements of CO could be used to estimate the exposure of humans to CO and other fire-related pollutants. We find that the enhancements in the column measurements are not always significantly evident in the corresponding surface measurements. Topographical features play a key role in determining the surface exposures from column abundance especially in a coastal city like Wollongong. The topography at Wollongong, combined with meteorological effects, potentially exacerbates differences in the column and surface. Hence, satellite column amounts are unlikely to provide an accurate reflection of exposure at the ground during major events like the 2019–2020 bushfires.

Funding

Australian Research Council (DP160100598)

History

Journal title

Atmosphere

Volume

12

Issue

6

Language

English

Usage metrics

    Categories

    No categories selected

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC