University of Wollongong
Browse

Temporal sentiment detection for user generated video product reviews

Download (296.79 kB)
conference contribution
posted on 2024-11-14, 11:30 authored by M S Barakat, Christian RitzChristian Ritz, David StirlingDavid Stirling
User generated video product reviews in social media is gaining popularity every day due to its creditability and the broad evaluation context provided by it. Extracting sentiment automatically from such videos will help the consumers making decisions and producers improving their products. This paper investigates the feasibility of sentiment detection temporally from those videos by analyzing the transcription generated by a speech recognition system which was not investigated before. Another two main contribution for this paper is introducing a solution to the problem of fixed threshold estimation for the Naive Bayesian classifier output probabilities and irrelative text filtering for improving the sentiment classifcation. Various experiments indicated the proposed system can achieve an F-score of 0.66 which is promising knowing that the sentiment classifier offers an F-score of 0.78 provided that the input text is error free.

History

Citation

M. S. Barakat, C. H. Ritz & D. A. Stirling, "Temporal sentiment detection for user generated video product reviews," in 13th International Symposium on Communications and Information Technologies: Communication and Information Technology for New Life Style Beyond the Cloud, ISCIT 2013, 2013, pp. 580-584.

Parent title

13th International Symposium on Communications and Information Technologies: Communication and Information Technology for New Life Style Beyond the Cloud, ISCIT 2013

Pagination

580-584

Language

English

RIS ID

86418

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC