posted on 2024-11-14, 11:44authored byLijuan Wang, Jun ShenJun Shen, Junzhou Luo
Data-intensive services have become one of the most challenging applications in cloud computing. The classical service composition problem will face new challenges as the services and correspondent data grow. A typical environment is the large scale scientific project AMS, which we are processing huge amount of data streams. In this paper, we will resolve service composition problem by considering the multi-objective data-intensive features. We propose to apply ant colony optimization algorithms and implemented them with simulated workflows in different scenarios. To evaluate the proposed algorithm, we compared it with a multi-objective genetic algorithm with respect to five performance metrics
History
Citation
Wang, L., Shen, J. & Luo, J. (2014). Multi-objective ant colony system for data-intensive service provision. International Conference on Advanced Cloud and Big Data (pp. 45-52). United States: Institute of Electrical and Electronics Engineers.