University of Wollongong
Browse

Electroactive polymers as soft robotic actuators: electromechanical modeling and identification

Download (485.84 kB)
conference contribution
posted on 2024-11-16, 07:52 authored by Rahim Mutlu, Gursel AliciGursel Alici, Weihua LiWeihua Li
Biologically inspired robotic applications have recently received significant attention due to developments in novel materials and actuators with an operation principle similar to the natural muscles’. Electroactive polymer (EAP) actuators, also known as artificial muscles, possess extraordinary properties such as low efficiency consumption, compliance, bio-compatibility and ability to be miniaturized. Although several methodologies have been proposed for modeling and identification of their quasi-static bending behavior, a negligibly small attention has been given to their dynamic behavior. In this paper, we, therefore, report on their electromechanical modeling and parameter identification. We model the tri-layer EAP actuators as a soft robotic actuator consisting of a significant number of rigid links connected with compliant revolute joints. The experimental and numerical results presented suggest that the soft robotics approach is an effective way to model the EAP actuator and subsequently identify its dynamic parameters accurately. We have previously employed the same soft robotic approach to estimate the whole shape of the EAP actuator as a function of time.

Funding

Pushing the limits: fabricating micro and nano actuators

Australian Research Council

Find out more...

History

Citation

Mutlu, R., Alici, G. & Li, W. (2013). Electroactive polymers as soft robotic actuators: electromechanical modeling and identification. 2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 1096-1101). United States: IEEE.

Parent title

2013 IEEE/ASME International Conference on Advanced Intelligent Mechatronics: Mechatronics for Human Wellbeing, AIM 2013

Pagination

1096-1101

Language

English

RIS ID

81625

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC