University of Wollongong
Browse

Dynamic model of fault slip and its effect on coal bursts in deep mines

Download (933.33 kB)
conference contribution
posted on 2024-11-13, 09:37 authored by Jan Nemcik, Gaetano Venticinque, Zhenjun Shan, Libin Gong
ABSTRACT: The success of deep mining operations relies upon controlling the fractured ground. It is a documented knowledge that many coal bursts occur when mining close to the existing faults. Gradual stress relief towards excavations and other mechanisms can unload stress normal to the nearby fault plane causing it to slip. The generated seismic waves impact the mine roadway rib sides and can produce a coal burst. As part of the ACARP project, the FLAC3D dynamic numerical model was used to show how a fault slip at various locations and orientations may initiate a coal burst. This study simulates an artificial fault slip with peak velocity reaching 4m/s in 0.013 seconds and displacing 119mm in total. Seismic induced peak particle velocities in rock and its influence on coal rib stability were investigated. 89 numerical models with various fault locations and orientations at 450m depth indicated that a 4 tonne coal block can be ejected from the mine roadway rib side at speeds of up to 5m/s. The important finding is that irrespective of the fault slip magnitude, the fault geometry and the in-situ stresses enable to predict which side of the mine roadway may experience the coal burst. Instructing the mine personnel to use the other side of the roadway may improve their safety. Overall, this research produced preliminary results to prove that this method can be used to flag the coal burst dangers for certain fault locations and orientations in deeper mines irrespective of the fault slip properties that are typically difficult to predict.

History

Citation

Jan Nemcik, Gaetano Venticinque, Zhenjun Shan, Libin Gong, Dynamic model of fault slip and its effect on coal bursts in deep mines, Proceedings of the 2021 Resource Operators Conference, University of Wollongong - Mining Engineering, 10-12 February 2021, University of Southern Queensland, 186-193.

Language

English

Usage metrics

    Categories

    Keywords

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC