Supplier evaluation has become a significant topic over the past decades, as companies have started to become more outsourced oriented. However, previous research on this topic has not paid adequate attention to the limitations associated with availability of accurate and reliable data relating to the performance of potential suppliers. In an attempt to address this issue, this paper proposes a novel supplier evaluation model that can handle imprecise quantitative and qualitative data. Additionally, Decision Maker’s opinions regarding both qualitative and quantitative criteria are incorporated into this model so that a more comprehensive and realistic assessment of supplier performance can be achieved. The model combines five separate methods that have specific capabilities to handle multiple limitations in the existing methods: Fuzzy Analytical Hierarchy Process and Fuzzy TOPSIS method are used to analyse qualitative criteria/data; Analytical Hierarchy Process and Axiomatic Design are used to analyse quantitative criteria/data, with a particular focus on handling variability in performance data; and Data Envelopment Analysis is used to integrate the results of the two approaches above so as to comparative assessment of supplier performance. This model is verified using a numerical example.
History
Citation
Ulutas, A., Kiridena, S. Gibson, P. (2012). A novel model to measure supplier performance in the supplier selection process. 7th International Congress on Logistics and SCM Systems (pp. 1-8). Korea: