3D printed soft pneumatic bending sensing chambers for bilateral and remote control of soft robotic systems
conference contribution
posted on 2024-11-15, 21:44 authored by Charbel Tawk, Peter in het PanhuisPeter in het Panhuis, Geoffrey SpinksGeoffrey Spinks, Gursel AliciGursel Alici© 2020 IEEE. This work reports on soft pneumatic bending sensing chambers that are directly 3D printed without requiring any support material and postprocessing using a low-cost and open-source fused deposition modeling (FDM) 3D printer and a commercially available soft thermoplastic polyurethane (TPU). These bending sensing chambers have multiple advantages including very fast response to any change in their internal volume, linearity, negligible hysteresis, repeatability, reliability, stability over time, long lifetime and very low power consumption. The performance of these soft sensing chambers is accurately predicted and optimized using finite element modeling (FEM) and a hyperelastic material model for the TPU used for 3D printing. The soft sensing chambers are tailored to several soft robotic applications such as bending sensors for bilateral control of soft robotic fingers and structures and soft wearable gloves for remote control of soft monolithic robotic fingers and adaptive grippers.
History
Citation
Tawk, C., in het Panhuis, P., Spinks, G. & Alici, G. (2020). 3D printed soft pneumatic bending sensing chambers for bilateral and remote control of soft robotic systems. IEEE/ASME International Conference on Advanced Intelligent Mechatronics, AIM (pp. 922-927).Publisher website/DOI
Language
EnglishRIS ID
145454Usage metrics
Categories
Keywords
Exports
RefWorksRefWorks
BibTeXBibTeX
Ref. managerRef. manager
EndnoteEndnote
DataCiteDataCite
NLMNLM
DCDC