University of Wollongong
Browse

Inertial microfluidics: mechanisms and applications

Download (2.5 MB)
chapter
posted on 2024-11-14, 09:10 authored by Jun Zhang, Weihua LiWeihua Li, Gursel AliciGursel Alici
In microfluidics, the typical sample volume is in the order of nL, which is incompatible with the common biosample volume in biochemistry and clinical diagnostics (usually ranging from 1 μL to approximately 1 mL). The recently emerged inertial microfluidic technology offers the possibility to process large volume (∼mL) of biosample by well-defined micro-structures. In contrast to conventional microfluidic technologies, where fluid inertia is negligible and flow remains almost within Stokes flow region with very low Reynolds number Re≪1 (Re=ρfUfH/μ, where ρ f, Ū f and μ are fluid density, average velocity and dynamic viscosity, respectively, and H is channel hydraulic diameter), inertial microfluidic devices work within an intermediate Reynolds number range (∼1 < Re < ∼100) between Stokes and turbulent regimes. In this intermediate range, both inertia and fluid viscosity are finite, and several intriguing effects appear and form the basis of inertial microfluidics, including (i) inertial migration and (ii) secondary flow. Due to the superior features of high-throughput, simplicity, precise manipulation and low-cost, inertial microfluidics has attracted significant attention from the microfluidic community. Meanwhile, a number of channel designs that focus, concentrate and separate particles and fluids have been explored and demonstrated. In this chapter, we discuss this fascinating technology from three crucial aspects: (1) fundamental mechanism, (2) microchannel designs and (3) applications. From this chapter, we hope that readers can have a clear understanding on the concept of inertial microfluidics, its working mechanism and potential applications.

History

Citation

Zhang, J., Li, W. & Alici, G. (2017). Inertial microfluidics: mechanisms and applications. In D. Zhang & B. Wei (Eds.), Advanced Mechatronics and MEMS Devices II (pp. 563-593). Switzerland: Springer International Publishing.

Pagination

563-593

Language

English

RIS ID

110648

Usage metrics

    Categories

    Exports

    RefWorks
    BibTeX
    Ref. manager
    Endnote
    DataCite
    NLM
    DC