Publication Details

McFadden, RML, Chatzichristos, A, Chow, KH, Cortie, DL, Dehn, MH, Fujimoto, D, Hossain, MD, Ji, H, Karner, VL, Kiefl, RF, Levy, CDP, Li, R, McKenzie, I, Morris, GD, Ofer, O, Pearson, MR, Stachura, M, Cava, RJ & MacFarlane, WA 2019, ‘Ionic and electronic properties of the topological insulator Bi2Te2Se investigated via β -detected nuclear magnetic relaxation and resonance of Li8’, Physical review. B, vol. 99, no. 12.


We report measurements on the high-temperature ionic and low-temperature electronic properties of the three-dimensional topological insulator Bi2Te2Se using ion-implanted 8Liβ-detected nuclear magnetic relaxation and resonance. With implantation energies in the range 5–28keV, the probes penetrate beyond the expected range of the topological surface state, but are still within 250nm of the surface. At temperatures above ∼150K, spin-lattice relaxation measurements reveal isolated 8Li+ diffusion with an activation energy EA=0.185(8)eV and attempt frequency τ−10=8±3×1011s−1 for atomic site-to-site hopping. At lower temperature, we find a linear Korringa-type relaxation mechanism with a field-dependent slope and intercept, which is accompanied by an anomalous field dependence to the resonance shift. We suggest that these may be related to a strong contribution from orbital currents or the magnetic freeze-out of charge carriers in this heavily compensated semiconductor, but that conventional theories are unable to account for the extent of the field dependence. Conventional NMR of the stable host nuclei may help elucidate their origin.



Link to publisher version (DOI)