Publication Details

Liu, G., Kong, L., Hu, Q. & Zhang, S. (2020). Diffused morphotropic phase boundary in relaxor-PbTiO3crystals: High piezoelectricity with improved thermal stability. Applied Physics Reviews, 7 (2), 021405-1-021405-12.


© 2020 Author(s). Solid solution ferroelectrics are the most widely used piezoelectric material for numerous electromechanical applications, including sensors, actuators, and transducers. A milestone in ferroelectric research is the discovery of the morphotropic phase boundary that was first reported in Pb(ZrxTi1-x)O3, which has been extensively solicited to improve the performance of various solid solution ferroelectrics, including those having the highest piezoelectricity known today. However, due to the inherent correlation between phase transition and thermodynamic imbalance, the efforts of building the phase boundary encounter the challenge that high performance materials are generally accompanied by property instability. Here, we report a comprehensive study on the crystalline symmetry and polar nano-regions in relaxor-PbTiO3 crystals by synchrotron measurements and property characterizations. In contrast to the common belief that the morphotropic phase boundary is a narrow composition region, the morphotropic phase boundary in ternary Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 is demonstrated as an extensive region covering at least 9% of the PbTiO3 content. Such a diffused morphotropic phase boundary is associated with the intensive interaction of polar nano-regions, leading to high piezoelectricity (>1500 pC/N) with greatly improved thermal stability, where the piezoelectric variation is ∼90% over the temperature range of 273-373 K, which is about a factor of 3 lower compared to its binary counterpart Pb(Mg1/3Nb2/3)O3-PbTiO3. This work sheds light on the fundamental understanding of nanoscale inhomogeneity and macroscopic symmetry in relaxor-PbTiO3, and successfully interlinks the structure and properties in complex solid solutions. The existence of a diffused morphotropic phase boundary is also expected to benefit other ferroic systems beyond ferroelectrics, such as ferromagnetic and multiferroic materials.



Link to publisher version (DOI)