Publication Details

Wang, Q., Wu, J., Lu, Z., Ciucci, F., Pang, W. & Guo, X. (2019). A New Lithium-Ion Conductor LiTaSiO5: Theoretical Prediction, Materials Synthesis, and Ionic Conductivity. Advanced Functional Materials, 29 (37), 1904232-1-1904232-9.


Owing to the nonleakage and incombustibility, solid electrolytes are crucial for solving the safety issues of rechargeable lithium batteries. In this work, a new class of solid electrolyte, acceptor-doped LiTaSiO5, is designed and synthesized based on the concerted migration mechanism. When Zr4+ is doped to the Ta5+ sites in LiTaSiO5, the high-energy lattice sites are partly occupied by the introduced lithium ions, and the lithium ions at those sites interact with the lithium ions placed in the low-energy sites, thereby favoring the concerted motion of lithium ions and lowering the energy barrier for ion transport. Therefore, the concerted migration of lithium ions occurs in Zr-doped LiTaSiO5, and a 3D lithium-ion diffusion network is established with quasi-1D chains connected through interchain channels. The lithium-ion occupation, as revealed by ab initio calculations, is validated by neutron powder diffraction. Zr-doped LiTaSiO5 electrolytes are successfully synthesized; Li1.1Ta0.9Zr0.1SiO5 shows a conductivity of 2.97 x 10−5 S cm−1 at 25 °C, about two orders of magnitude higher than that of LiTaSiO5, and it increases to 3.11 x 10−4 S cm−1 at 100 °C. This work demonstrates the power of theory in designing new materials.

Grant Number