RIS ID

134677

Publication Details

Zhang, H., Wallace, G. G. & Higgins, M. J. (2019). Effect of monophasic pulsed stimulation on live single cell de-adhesion on conducting polymers with adsorbed fibronectin as revealed by single cell force spectroscopy. Biointerphases: an open access journal for the biomaterials interface community, 14 (2), 021003-1-021003-11.

Abstract

The force required to detach a single fibroblast cell in contact with the conducting polymer, polypyrrole doped with dodecylbenzene, was quantified using the Atomic Force Microscope-based technique, Single Cell Force Spectroscopy. The de-adhesion force for a single cell was 0.64 ± 0.03 nN and predominately due to unbinding of α5β1 integrin complexes with surface adsorbed fibronectin, as confirmed by blocking experiments using antibodies. Monophasic pulsed stimulation (50 μs pulse duration) superimposed on either an applied oxidation (+500) or reduction (−500 mV) constant voltage caused a significant decrease in the de-adhesion force by 30%-45% to values ranging from 0.34 to 0.43 nN (±0.02 nN). The electrical stimulation caused a reduction in the molecular-level jump and plateau interactions, while an opposing increase in nonspecific interactions was observed during the cell de-adhesion process. Due to the monophasic pulsed stimulation, there is an apparent change or weakening of the cell membrane properties, which is suggested to play a role in reducing the cell de-adhesion. Based on this study, pulsed stimulation with optimized threshold parameters represents a possible approach to tune cell interactions and adhesion on conducting polymers.

Grant Number

ARC/DP110104359

Grant Number

ARC/CE140100012

Available for download on Sunday, March 29, 2020

Share

COinS