Tailoring exchange bias in ferro/antiferromagnetic FePt3 bilayers created by He+ beams



Publication Details

Causer, G. L., Zhu, H., Ionescu, M., Mankey, G. J., Wang, X. L. & Klose, F. (2018). Tailoring exchange bias in ferro/antiferromagnetic FePt3 bilayers created by He+ beams. Journal of Physics Condensed Matter, 30 (31), 315804-1-315804-8.


We report on artificial exchange bias created in a continuous epitaxial FePt3film by introducing chemical disorder using a He+beam, which features tailorable exchange bias strength through post-irradiation annealing. By design, the ferromagnetic (FM)/antiferromagnetic (AF) heterostructure exhibits stratified degrees of chemical order; however, the chemical composition and stoichiometry are invariant throughout the film volume. This uniquely allows for a consideration purely of the magnetic exchange across the FM/AF interface without the added hindrance of structural boundary parameters which inherently affect exchange bias quality. Annealing at 840 K results in the strongest exchange biased system, which displays a cross-sectional morphology of fine (<10 >nm) domain structure composed of both of chemically ordered and chemically disordered domains. A magnetic model developed from fitting the characteristic polarised neutron reflectometry spectral features reveals that dual interactions can be attributed to the observed exchange bias: magnetic coupling at the FM/AF interface and also between neighbouring FM (chemically disordered) and AF (chemically ordered) domains within the nominally FM layer. Our results indicate that exchange bias is hindered at interfaces which are both chemically and magnetically perfect, while annealing can be used to balance the volume proportions of interfacial FM and AF domains to enhance the magnetic interface roughness for customisable exchange bias in mono-stoichiometric FM/AF heterostructures crafted by ion beams.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)