Suction-enhanced siphon valves for centrifugal microfluidic platforms



Publication Details

Gorkin , R., Soroori, S., Southard, W., Clime, L., Veres, T., Kido, H., Kulinsky, L. & Madou, M. (2012). Suction-enhanced siphon valves for centrifugal microfluidic platforms. Microfluidics and Nanofluidics, 12 (1-4), 345-354.


In traditional centrifugal microfluidic platforms pumping is restricted to outward fluid flow, resulting in potential real estate issues for embedding complex microsystems. To overcome the limitation, researchers utilize hydrophilic channels to force liquids short distances back toward the disk center. However, most polymers used for CD fabrication are natively hydrophobic, and creating hydrophilic conditions requires surface treatments/specialized materials that pose unique challenges to manufacturing and use. This work describes a novel technology that enjoys the advantages of hydrophilic fluidics on a hydrophobic disk device constructed from untreated polycarbonate plastic. The method, termed suction-enhanced siphoning, is based on exploiting the non-linear hydrostatic pressure profile and related pressure drop created along the length of a rotating microchannel. Theoretical analysis as well as experimental validation of the system is provided. In addition, we demonstrate the use of the hydrostatic pressure pump as a new method for priming hydrophobicbased siphon structures. The development of such techniques for hydrophobic fluidics advances the capabilities of the centrifugal microfluidic platform while remaining true to the goal of creating disposable polymer devices using feasible manufacturing schemes.

Please refer to publisher version or contact your library.



Link to publisher version (DOI)